Bifurcation of operator equations with unbounded linearized part
نویسندگان
چکیده
منابع مشابه
Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملGyrokinetic linearized Landau collision operator.
The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species, which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag...
متن کاملA Generalized Collectively Compact Operator Theory with an Application to Integral Equations on Unbounded Domains
In this paper a generalization of collectively compact operator theory in Banach spaces is developed. A feature of the new theory is that the operators involved are no longer required to be compact in the norm topology. Instead it is required that the image of a bounded set under the operator family is sequentially compact in a weaker topology. As an application, the theory developed is used to...
متن کاملDifferential Constraints Compatible with Linearized Equations
Differential constraints compatible with the linearized equations of partial differential equations are examined. Recursion operators are obtained by integrating the differential constraints. One of the standard ways for determining particular solutions to partial differential equations is to reduce them to ordinary differential equations which are easier to solve. The classical work of Lie abo...
متن کاملNonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients
We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1975
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1975.57.611